Real zeros of real odd Dirichlet L-functions
نویسنده
چکیده
Let χ be a real odd Dirichlet character of modulus d, and let L(s, χ) be the associated Dirichlet L-function. As a consequence of the work of Low and Purdy, it is known that if d ≤ 800 000 and d 6= 115 147, 357 819, 636 184, then L(s, χ) has no positive real zeros. By a simple extension of their ideas and the advantage of thirty years of advances in computational power, we are able to prove that if d ≤ 300 000 000, then L(s, χ) has no positive real zeros.
منابع مشابه
The Prime Number Race and Zeros of Dirichlet L-functions off the Critical Line. Iii
We show, for any q 3 and distinct reduced residues a, b (mod q), the existence of certain hypothetical sets of zeros of Dirichlet L-functions lying off the critical line implies that π(x; q, a) < π(x; q, b) for a set of real x of asymptotic density 1.
متن کاملZeros of Dirichlet L-functions near the Real Axis and Chebyshev's Bias
We examine the connections between small zeros of quadratic L-functions, Chebyshev's bias, and class numbers of imaginary quadratic elds.
متن کاملReal zeros of quadratic Dirichlet L - functions
A small part of the Generalized Riemann Hypothesis asserts that L-functions do not have zeros on the line segment ( 2 , 1]. The question of vanishing at s = 2 often has deep arithmetical significance, and has been investigated extensively. A persuasive view is that L-functions vanish at 2 either for trivial reasons (the sign of the functional equation being negative), or for deep arithmetical r...
متن کاملDomain of attraction of normal law and zeros of random polynomials
Let$ P_{n}(x)= sum_{i=0}^{n} A_{i}x^{i}$ be a random algebraicpolynomial, where $A_{0},A_{1}, cdots $ is a sequence of independent random variables belong to the domain of attraction of the normal law. Thus $A_j$'s for $j=0,1cdots $ possesses the characteristic functions $exp {-frac{1}{2}t^{2}H_{j}(t)}$, where $H_j(t)$'s are complex slowlyvarying functions.Under the assumption that there exist ...
متن کاملZero Spacing Distributions for Differenced L-Functions
The paper studies the local zero spacings of deformations of the Riemann ξ-function under certain averaging and differencing operations. For real h we consider the entire functions Ah(s) := 1 2 (ξ(s + h) + ξ(s− h)) and Bh(s) = 1 2i (ξ(s+ h)− ξ(s− h)) . For |h| ≥ 1 2 the zeros of Ah(s) and Bh(s) all lie on the critical line R(s) = 1 2 and are simple zeros. The number of zeros of these functions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 73 شماره
صفحات -
تاریخ انتشار 2004